organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-{3,4-Dibutoxy-5-[5-(3-methylphenyl)-1,3,4-oxadiazol-2-yl]thiophen-2-yl}-5-(3methylphenyl)-1,3,4-oxadiazole

Lu-Na Han,^a Ran-Zhe Lu,^b Min Zhang^a and Hai-bo Wang^b*

^aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and ^bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: wanghaibo@njut.edu.cn

Received 16 February 2009; accepted 23 February 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.071; wR factor = 0.167; data-to-parameter ratio = 14.9.

In the title compound, $C_{30}H_{32}N_4O_4S$, the dihedral angles between the central thiophene ring and the pendant oxadiazole rings are 10.1 (2) and 6.8 (3)°. The dihedral angles between each oxadiazole ring and its adjacent benzene ring are 6.8 (2) and 5.3 (3)°.

Related literature

For background on the applications of thiophenes, see: Laurent *et al.* (2005).

Experimental

Crystal data

 $C_{30}H_{32}N_4O_4S$ $M_r = 544.67$ Monoclinic, $P2_1/c$ a = 16.421 (3) Å b = 14.432 (3) Å c = 12.338 (3) Å $\beta = 98.36$ (3)°

Data collection

Enraf–Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.956, T_{\max} = 0.985$ 5526 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.167$ S = 1.005260 reflections 352 parameters $V = 2892.9 (11) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.15 mm^{-1} T = 293 K 0.30 \times 0.20 \times 0.10 mm

5260 independent reflections 2161 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ 3 standard reflections every 200 reflections intensity decay: 1%

52 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.15$ e Å⁻³ $\Delta \rho_{min} = -0.13$ e Å⁻³

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2914).

References

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Laurent, B., Evelyne, M. & Adrien, N. (2005). Eur. J. Med. Chem. 40, 757–763. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o622 [doi:10.1107/S1600536809006539]

2-{3,4-Dibutoxy-5-[5-(3-methylphenyl)-1,3,4-oxadiazol-2-yl]thiophen-2-yl}-5-(3-methylphenyl)-1,3,4-oxadiazole

L.-N. Han, R.-Z. Lu, M. Zhang and H. Wang

Comment

Some thiophene derivatives possess biological properties (Laurent *et al.*, 2005). As part of our studies in this area, we report here the synthesis and crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1.

Experimental

3,4-Dibutoxythiophene-2,5-dicarbohydrazide (10 mmol) was dissolved in pyridine (30 ml), and 4-methylbenzoyl chloride (22 mmol) was dropped into the mixture. The resulting mixture was reaction at 348 K for 5 h. After cooling, the mixture was poured into cold water. After filtrating and drying, a white solid compound was obtained.

The crude compound was dissolved in phosphoryl trichloride (30 ml). The mixture was refluxed for 12 h. After cooling, the mixture was poured onto crushed ice. The title compound was obtained and purified by recrystalization from trichloromethane. Yield is 78% and melting point is 440 K. Light yellow blocks of (I) were obtained by slow evaporation of ethyl acetate solution.

Refinement

All H atoms were placed geometrically (C—H = 0.93–0.96 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ or $1.5U_{eq}(\text{methyl carrier})$.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. Short H…O contacts are shown as dashed lines.

2-{3,4-Dibutoxy-5-[5-(3-methylphenyl)-1,3,4-oxadiazol-2-yl]thiophen-2-yl}- 5-(3-methylphenyl)-1,3,4-oxadiazole

Crystal data $C_{30}H_{32}N_4O_4S$ $M_r = 544.67$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc

 $F_{000} = 1152$ $D_x = 1.251 \text{ Mg m}^{-3}$ Melting point: 440 K Mo K α radiation $\lambda = 0.71073 \text{ Å}$

<i>a</i> = 16.421 (3) Å
<i>b</i> = 14.432 (3) Å
c = 12.338(3) Å
$\beta = 98.36 (3)^{\circ}$
$V = 2892.9 (11) \text{ Å}^3$
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.048$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.3^{\circ}$
T = 293 K	$h = 0 \rightarrow 19$
$\omega/2\theta$ scans	$k = 0 \rightarrow 17$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -14 \rightarrow 14$
$T_{\min} = 0.956, \ T_{\max} = 0.985$	3 standard reflections
5526 measured reflections	every 200 reflections
5260 independent reflections	intensity decay: 1%
2161 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.071$	H-atom parameters constrained
$wR(F^2) = 0.167$	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2 + 1.2P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
5260 reflections	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
352 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
52 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Cell parameters from 25 reflections

 $\theta = 8-12^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$ T = 293 K

Block, light yellow $0.30 \times 0.20 \times 0.10 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S	0.26175 (7)	0.22411 (9)	0.70173 (9)	0.0957 (4)
N1	0.4127 (2)	0.2826 (3)	1.0254 (3)	0.1009 (12)
01	0.36204 (17)	0.4067 (2)	0.9317 (3)	0.1033 (10)
C1	0.5391 (3)	0.4136 (3)	1.4095 (3)	0.1134 (16)
H1B	0.5566	0.4622	1.4607	0.170*
H1C	0.5854	0.3751	1.4004	0.170*
H1D	0.4977	0.3768	1.4366	0.170*
02	0.28937 (19)	0.4885 (3)	0.7289 (2)	0.1031 (10)
N2	0.3700 (2)	0.2498 (3)	0.9236 (3)	0.1017 (12)
C2	0.5029 (3)	0.4566 (4)	1.2971 (4)	0.0997 (15)
03	0.1942 (2)	0.4382 (2)	0.5174 (2)	0.1087 (10)
N3	0.1668 (3)	0.1439 (4)	0.4892 (3)	0.1150 (14)
C3	0.5001 (3)	0.5472 (5)	1.2837 (4)	0.1192 (18)
H3B	0.5219	0.5845	1.3423	0.143*
O4	0.12985 (18)	0.2718 (2)	0.4131 (3)	0.1015 (9)
C4	0.4659 (3)	0.5907 (4)	1.1849 (4)	0.1109 (16)
H4A	0.4644	0.6543	1.1722	0.133*
N4	0.1195 (3)	0.1222 (3)	0.3878 (4)	0.1079 (13)
C5	0.4329 (3)	0.5193 (5)	1.1053 (5)	0.122 (2)
H5A	0.4060	0.5421	1.0391	0.147*
C6	0.4354 (3)	0.4324 (5)	1.1124 (4)	0.1071 (17)
C7	0.4737 (3)	0.4002 (4)	1.2129 (4)	0.1107 (16)
H7A	0.4796	0.3366	1.2228	0.133*
C8	0.4034 (3)	0.3681 (5)	1.0312 (4)	0.1074 (16)
С9	0.3451 (3)	0.3246 (4)	0.8750 (4)	0.1014 (15)
C10	0.2980 (3)	0.3296 (4)	0.7657 (4)	0.0948 (13)
C11	0.2710 (3)	0.4006 (4)	0.7014 (4)	0.0964 (13)
C12	0.2256 (3)	0.5477 (4)	0.7441 (4)	0.1291 (18)
H12A	0.2030	0.5311	0.8099	0.155*
H12B	0.1820	0.5445	0.6821	0.155*
C13	0.2629 (3)	0.6454 (4)	0.7548 (5)	0.1299 (19)
H13A	0.3086	0.6504	0.7134	0.156*
H13B	0.2219	0.6915	0.7281	0.156*
C14	0.2906 (3)	0.6583 (4)	0.8693 (5)	0.133 (2)
H14A	0.3325	0.6114	0.8882	0.160*
H14B	0.2444	0.6398	0.9054	0.160*
C15	0.3226 (3)	0.7401 (4)	0.9256 (4)	0.1344 (19)
H15A	0.3366	0.7269	1.0024	0.202*
H15B	0.2818	0.7882	0.9156	0.202*
H15C	0.3709	0.7602	0.8967	0.202*
C16	0.2334 (3)	0.3697 (4)	0.5944 (4)	0.1108 (16)
C17	0.2452 (3)	0.4653 (4)	0.4567 (4)	0.1100 (15)
H17A	0.2766	0.4122	0.4378	0.132*
H17B	0.2834	0.5080	0.4980	0.132*
C18	0.2077 (3)	0.5116 (4)	0.3538 (4)	0.1224 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H18A	0.1648	0.4709	0.3184	0.147*
H18B	0.1807	0.5672	0.3745	0.147*
C19	0.2573 (3)	0.5376 (4)	0.2730 (4)	0.1191 (17)
H19A	0.2880	0.4842	0.2534	0.143*
H19B	0.2964	0.5847	0.3027	0.143*
C20	0.2018 (4)	0.5762 (4)	0.1680 (5)	0.161 (2)
H20A	0.2358	0.5920	0.1137	0.242*
H20B	0.1732	0.6305	0.1871	0.242*
H20C	0.1626	0.5298	0.1393	0.242*
C21	0.2166 (3)	0.2781 (4)	0.5906 (3)	0.0928 (12)
C22	0.1734 (3)	0.2329 (4)	0.4973 (4)	0.0921 (13)
C23	0.0989 (3)	0.1984 (5)	0.3461 (5)	0.1063 (16)
C24	0.0474 (3)	0.2255 (6)	0.2409 (5)	0.1150 (17)
C25	0.0259 (3)	0.3153 (5)	0.2097 (5)	0.1220 (19)
H25A	0.0438	0.3633	0.2577	0.146*
C26	-0.0201 (3)	0.3368 (4)	0.1127 (6)	0.1280 (19)
H26A	-0.0336	0.3980	0.0948	0.154*
C27	-0.0465 (4)	0.2655 (6)	0.0408 (5)	0.130 (2)
H27A	-0.0788	0.2768	-0.0263	0.156*
C28	-0.0232 (4)	0.1798 (6)	0.0728 (5)	0.126 (2)
C29	0.0204 (3)	0.1594 (4)	0.1728 (5)	0.1141 (17)
H29A	0.0310	0.0979	0.1926	0.137*
C30	-0.0652 (4)	0.1206 (4)	-0.0041 (5)	0.150 (2)
H30A	-0.0751	0.0645	0.0335	0.225*
H30B	-0.0290	0.1080	-0.0568	0.225*
H30C	-0.1164	0.1446	-0.0409	0.225*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
S	0.0992 (8)	0.0908 (9)	0.0966 (8)	-0.0007 (7)	0.0129 (6)	0.0017 (7)
N1	0.094 (3)	0.108 (3)	0.098 (3)	0.001 (3)	0.006 (2)	-0.003 (3)
O1	0.100 (2)	0.117 (3)	0.090 (2)	0.0008 (19)	0.0034 (16)	0.002 (2)
C1	0.130 (4)	0.115 (4)	0.093 (3)	-0.009 (3)	0.014 (3)	-0.019 (3)
O2	0.099 (2)	0.106 (3)	0.106 (2)	0.014 (2)	0.0213 (16)	-0.011 (2)
N2	0.096 (3)	0.111 (4)	0.094 (3)	0.017 (2)	0.001 (2)	-0.004 (2)
C2	0.099 (3)	0.113 (4)	0.085 (3)	-0.011 (3)	0.007 (2)	-0.011 (3)
O3	0.123 (2)	0.107 (3)	0.097 (2)	0.000 (2)	0.0192 (18)	0.020 (2)
N3	0.129 (4)	0.115 (4)	0.099 (3)	0.005 (3)	0.010 (2)	0.013 (3)
C3	0.140 (4)	0.122 (5)	0.089 (3)	-0.032 (4)	-0.007 (3)	-0.022 (3)
O4	0.095 (2)	0.108 (3)	0.101 (2)	0.004 (2)	0.0117 (16)	0.006 (2)
C4	0.098 (3)	0.121 (5)	0.115 (4)	-0.014 (3)	0.023 (3)	-0.017 (4)
N4	0.107 (3)	0.117 (4)	0.099 (3)	-0.004 (3)	0.014 (2)	-0.016 (3)
C5	0.097 (4)	0.149 (6)	0.116 (4)	0.007 (4)	-0.004 (3)	-0.010 (5)
C6	0.112 (4)	0.131 (5)	0.079 (3)	0.000 (4)	0.014 (3)	-0.001 (4)
C7	0.097 (3)	0.118 (5)	0.118 (4)	-0.008 (3)	0.020 (3)	-0.003 (4)
C8	0.100 (4)	0.131 (5)	0.091 (3)	0.006 (4)	0.013 (3)	0.005 (4)
C9	0.101 (3)	0.115 (5)	0.086 (3)	-0.011 (3)	0.002 (2)	-0.008 (3)

0.085 (3) 0.097 (3) 0.145 (4)	-0.001 (3) -0.005 (3)	0.006 (2) 0.029 (3)	0.008(3) -0.010(3)
0.097 (3) 0.145 (4)	-0.005 (3)	0.029 (3)	-0.010(3)
0.145 (4)			5.010 (5)
	0.005 (4)	0.007 (3)	-0.014 (4)
0.135 (5)	0.018 (4)	0.036 (4)	0.026 (4)
0.132 (4)	0.013 (4)	0.020 (3)	0.000 (4)
0.126 (4)	0.026 (4)	0.041 (3)	0.022 (4)
0.093 (3)	0.002 (4)	0.004 (3)	0.007 (3)
0.109 (3)	-0.001 (3)	0.017 (3)	0.009 (3)
0.128 (4)	0.001 (3)	0.036 (3)	-0.005 (3)
0.128 (4)	-0.005 (3)	0.035 (4)	-0.021 (3)
0.169 (6)	-0.007 (4)	0.010 (5)	0.037 (4)
0.080 (3)	0.010 (3)	0.005 (2)	0.008 (3)
0.090 (3)	0.002 (3)	0.009 (2)	0.009 (3)
0.105 (4)	-0.014 (4)	0.015 (3)	-0.010 (4)
0.104 (4)	-0.010 (4)	0.015 (3)	0.001 (4)
0.118 (4)	-0.001 (4)	0.016 (3)	-0.021 (4)
0.154 (5)	-0.006 (4)	0.023 (4)	0.004 (5)
0.125 (5)	-0.013 (5)	0.020 (4)	-0.006 (5)
0.115 (5)	-0.010 (5)	0.021 (4)	-0.018 (5)
0.115 (4)	-0.010(3)	0.008 (3)	-0.011 (4)
	$\begin{array}{c} 0.125 \ (4) \\ 0.169 \ (6) \\ 0.080 \ (3) \\ 0.090 \ (3) \\ 0.105 \ (4) \\ 0.105 \ (4) \\ 0.118 \ (4) \\ 0.154 \ (5) \\ 0.125 \ (5) \\ 0.115 \ (5) \\ 0.115 \ (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

S—C21	1.655 (4)	С13—Н13А	0.9700
S-C10	1.777 (5)	С13—Н13В	0.9700
N1—C8	1.246 (6)	C14—C15	1.432 (6)
N1—N2	1.427 (5)	C14—H14A	0.9700
O1—C9	1.384 (5)	C14—H14B	0.9700
O1—C8	1.427 (5)	C15—H15A	0.9600
C1—C2	1.556 (6)	C15—H15B	0.9600
C1—H1B	0.9600	C15—H15C	0.9600
C1—H1C	0.9600	C16—C21	1.350 (6)
C1—H1D	0.9600	C17—C18	1.486 (6)
O2—C11	1.337 (5)	C17—H17A	0.9700
O2—C12	1.385 (5)	C17—H17B	0.9700
N2—C9	1.274 (6)	C18—C19	1.426 (6)
C2—C3	1.318 (6)	C18—H18A	0.9700
C2—C7	1.352 (6)	C18—H18B	0.9700
O3—C17	1.264 (4)	C19—C20	1.574 (6)
O3—C16	1.456 (5)	С19—Н19А	0.9700
N3—C22	1.292 (5)	C19—H19B	0.9700
N3—N4	1.409 (5)	C20—H20A	0.9600
C3—C4	1.413 (6)	C20—H20B	0.9600
С3—Н3В	0.9300	C20—H20C	0.9600
O4—C22	1.300 (5)	C21—C22	1.420 (6)
O4—C23	1.394 (6)	C23—C24	1.496 (7)
C4—C5	1.472 (7)	C24—C29	1.306 (7)
C4—H4A	0.9300	C24—C25	1.383 (7)

N4—C23	1.240 (6)	C25—C26	1.355 (7)
C5—C6	1.257 (7)	C25—H25A	0.9300
C5—H5A	0.9300	C26—C27	1.386 (7)
C6—C7	1.387 (6)	C26—H26A	0.9300
C6—C8	1.410 (7)	C27—C28	1.338 (8)
С7—Н7А	0.9300	C27—H27A	0.9300
C9—C10	1.456 (6)	C28—C29	1.366 (7)
C10-C11	1.332 (6)	C28—C30	1.383 (7)
C11—C16	1.444 (6)	С29—Н29А	0.9300
C12—C13	1.536 (6)	C30—H30A	0.9600
C12—H12A	0.9700	C30—H30B	0.9600
C12—H12B	0.9700	С30—Н30С	0.9600
C13—C14	1.431 (6)		
C21—S—C10	92.6 (3)	H15A—C15—H15B	109.5
C8—N1—N2	109.3 (5)	C14—C15—H15C	109.5
C9—O1—C8	97.8 (4)	H15A—C15—H15C	109.5
C2—C1—H1B	109.5	H15B—C15—H15C	109.5
C2—C1—H1C	109.5	C21—C16—C11	113.1 (5)
H1B—C1—H1C	109.5	C21—C16—O3	125.0 (5)
C2—C1—H1D	109.5	C11—C16—O3	118.5 (5)
H1B—C1—H1D	109.5	O3—C17—C18	114.7 (4)
H1C—C1—H1D	109.5	O3—C17—H17A	108.6
C11—O2—C12	118.1 (4)	C18—C17—H17A	108.6
C9—N2—N1	102.5 (4)	O3—C17—H17B	108.6
C3—C2—C7	119.9 (5)	C18—C17—H17B	108.6
C3—C2—C1	120.7 (5)	H17A—C17—H17B	107.6
C7—C2—C1	119.4 (5)	C19—C18—C17	120.5 (5)
C17—O3—C16	109.2 (4)	C19—C18—H18A	107.2
C22—N3—N4	108.6 (4)	C17—C18—H18A	107.2
C2—C3—C4	123.5 (5)	C19—C18—H18B	107.2
С2—С3—Н3В	118.3	C17—C18—H18B	107.2
С4—С3—Н3В	118.3	H18A—C18—H18B	106.8
C22—O4—C23	104.8 (4)	C18—C19—C20	110.3 (5)
C3—C4—C5	109.0 (5)	С18—С19—Н19А	109.6
C3—C4—H4A	125.5	С20—С19—Н19А	109.6
С5—С4—Н4А	125.5	C18—C19—H19B	109.6
C23—N4—N3	104.7 (5)	С20—С19—Н19В	109.6
C6—C5—C4	130.3 (6)	H19A—C19—H19B	108.1
С6—С5—Н5А	114.8	C19—C20—H20A	109.5
С4—С5—Н5А	114.8	C19—C20—H20B	109.5
C5—C6—C7	113.7 (6)	H20A—C20—H20B	109.5
C5—C6—C8	127.1 (6)	С19—С20—Н20С	109.5
C7—C6—C8	119.2 (6)	H20A—C20—H20C	109.5
C2—C7—C6	123.4 (6)	H20B-C20-H20C	109.5
С2—С7—Н7А	118.3	C16—C21—C22	123.6 (5)
С6—С7—Н7А	118.3	C16—C21—S	111.6 (4)
N1—C8—C6	131.1 (6)	C22—C21—S	124.5 (4)
N1—C8—O1	112.6 (5)	N3—C22—O4	109.7 (5)
C6—C8—O1	115.8 (6)	N3—C22—C21	123.1 (5)

N2—C9—O1	117.4 (4)	O4—C22—C21	127.0 (5)
N2—C9—C10	124.7 (5)	N4—C23—O4	112.0 (5)
O1—C9—C10	117.9 (5)	N4—C23—C24	132.7 (6)
C11—C10—C9	132.5 (5)	O4—C23—C24	115.3 (6)
C11—C10—S	109.5 (4)	C29—C24—C25	117.2 (6)
C9—C10—S	117.9 (4)	C29—C24—C23	117.6 (7)
C10-C11-O2	122.4 (5)	C25—C24—C23	125.2 (6)
C10-C11-C16	111.6 (5)	C26—C25—C24	123.1 (6)
O2—C11—C16	125.2 (5)	С26—С25—Н25А	118.4
O2—C12—C13	106.1 (5)	С24—С25—Н25А	118.4
O2—C12—H12A	110.5	C25—C26—C27	118.6 (7)
C13—C12—H12A	110.5	С25—С26—Н26А	120.7
O2—C12—H12B	110.5	С27—С26—Н26А	120.7
C13—C12—H12B	110.5	C28—C27—C26	116.6 (7)
H12A—C12—H12B	108.7	С28—С27—Н27А	121.7
C14—C13—C12	105.6 (5)	С26—С27—Н27А	121.7
C14—C13—H13A	110.6	C27—C28—C29	123.7 (7)
C12—C13—H13A	110.6	C27—C28—C30	106.0 (7)
C14—C13—H13B	110.6	C29—C28—C30	129.1 (8)
С12—С13—Н13В	110.6	C24—C29—C28	120.5 (7)
H13A—C13—H13B	108.7	С24—С29—Н29А	119.7
C13—C14—C15	128.9 (6)	С28—С29—Н29А	119.7
C13—C14—H14A	105.1	С28—С30—Н30А	107.0
C15—C14—H14A	105.1	С28—С30—Н30В	106.6
C13-C14-H14B	105.1	H30A—C30—H30B	109.5
C15—C14—H14B	105.1	С28—С30—Н30С	114.7
H14A—C14—H14B	105.9	H30A—C30—H30C	109.5
C14—C15—H15A	109.5	H30B-C30-H30C	109.5
C14—C15—H15B	109.5		
C8—N1—N2—C9	5.5 (6)	O2-C11-C16-C21	-176.0 (4)
C7—C2—C3—C4	1.6 (9)	C10-C11-C16-O3	174.7 (4)
C1—C2—C3—C4	-178.1 (4)	O2-C11-C16-O3	-15.8 (7)
C2—C3—C4—C5	1.9 (7)	C17—O3—C16—C21	-108.3 (6)
C22—N3—N4—C23	-2.9 (6)	C17—O3—C16—C11	94.0 (5)
C3—C4—C5—C6	-3.9 (9)	C16-O3-C17-C18	161.7 (4)
C4—C5—C6—C7	1.8 (10)	O3—C17—C18—C19	-174.0 (5)
C4—C5—C6—C8	-178.8 (5)	C17—C18—C19—C20	174.6 (4)
C3—C2—C7—C6	-4.2 (8)	C11-C16-C21-C22	174.4 (4)
C1—C2—C7—C6	175.5 (4)	O3—C16—C21—C22	15.8 (8)
C5—C6—C7—C2	2.5 (8)	C11—C16—C21—S	-12.2 (6)
C8—C6—C7—C2	-177.0 (5)	O3—C16—C21—S	-170.9 (4)
N2—N1—C8—C6	-177.4 (5)	C10—S—C21—C16	5.6 (4)
N2—N1—C8—O1	-6.6 (6)	C10—S—C21—C22	178.9 (4)
C5—C6—C8—N1	168.7 (6)	N4—N3—C22—O4	4.3 (5)
C7—C6—C8—N1	-11.9 (9)	N4—N3—C22—C21	179.2 (4)
C5—C6—C8—O1	-1.8 (9)	C23—O4—C22—N3	-3.9 (5)
C7—C6—C8—O1	177.6 (4)	C23—O4—C22—C21	-178.5 (4)
C9—O1—C8—N1	4.7 (5)	C16—C21—C22—N3	170.8 (5)
C9—O1—C8—C6	177.0 (4)	S-C21-C22-N3	-1.6 (7)

N1—N2—C9—O1	-2.5 (6)	C16-C21-C22-O4	-15.3 (8)
N1-N2-C9-C10	179.4 (4)	S-C21-C22-O4	172.3 (3)
C8—O1—C9—N2	-0.9 (5)	N3—N4—C23—O4	0.4 (6)
C8—O1—C9—C10	177.2 (4)	N3—N4—C23—C24	-178.7 (5)
N2-C9-C10-C11	-176.1 (5)	C22—O4—C23—N4	2.1 (6)
O1-C9-C10-C11	5.9 (8)	C22—O4—C23—C24	-178.6 (4)
N2—C9—C10—S	8.1 (7)	N4—C23—C24—C29	-4.4 (9)
O1—C9—C10—S	-169.9 (3)	O4—C23—C24—C29	176.6 (4)
C21—S—C10—C11	2.7 (4)	N4-C23-C24-C25	175.6 (6)
C21—S—C10—C9	179.4 (4)	O4—C23—C24—C25	-3.4 (8)
C9—C10—C11—O2	4.4 (8)	C29—C24—C25—C26	-0.9 (8)
S-C10-C11-O2	-179.6 (3)	C23—C24—C25—C26	179.1 (5)
C9—C10—C11—C16	174.3 (5)	C24—C25—C26—C27	-0.4 (8)
S-C10-C11-C16	-9.7 (5)	C25—C26—C27—C28	-0.9 (8)
C12-O2-C11-C10	-116.6 (5)	C26—C27—C28—C29	3.6 (9)
C12—O2—C11—C16	74.9 (6)	C26—C27—C28—C30	172.3 (5)
C11—O2—C12—C13	-170.5 (4)	C25—C24—C29—C28	3.5 (8)
O2-C12-C13-C14	-90.1 (5)	C23—C24—C29—C28	-176.5 (5)
C12—C13—C14—C15	-173.2 (6)	C27—C28—C29—C24	-5.2 (9)
C10-C11-C16-C21	14.5 (6)	C30-C28-C29-C24	-171.1 (6)

sup-9